Abstract

A model for horizontal peak ground strain (PGS) is developed in consideration of three fundamental contributions to spatially variable ground motion (SVGM): (1) spatial incoherence effects, which contribute to phase variability in a stochastic sense; (2) wave passage effects, which contribute to phase variability in a deterministic sense; and (3) amplitude variability. Previous models for each of these effects are reviewed and compared to array data from Borrego Valley, California. Published empirical models for coherency and amplitude variability are found to represent reasonably well the Borrego data. We extend previous work by considering correlations of amplitude and phase variability (generally found to be small) and characterizing the coherency-dependent probabilistic distribution of phase variability. Using the aforementioned amplitude and phase variability models, a procedure is developed to generate simulated acceleration records from a seed record. The procedure is applied to a suite of Northridge earthquake recordings to predict ground strains, which are found to be strongly dependent on the peak ground velocity (PGV) of the seed motion and the separation distance between the seed and simulated motions. The dependence of PGS on PGV saturates for large PGV (> 50 cm/sec).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call