Abstract
We first proposed the concept of in situ in vivo bioprinting in order to address the existing deficiencies in conventional bioprinting. Herein we verified this concept taking the case of the treatment for gastric wall injury and presented this work as a preliminary step towards a new method in the field of bioprinting. In this study, a micro bioprinting platform which can be installed to an endoscope was developed to enter the human body and process bioprinting. Printed circuit micro-electro-mechanical-system techniques were used in the design and fabrication of the platform. Control system with high accuracy was developed and performance tests were carried out to verify the feasibility of the platform. The 2-layer tissue scaffolds were printed in a stomach model. Gelatin–alginate hydrogels with human gastric epithelial cells and human gastric smooth muscle cells were used as bioinks to mimic the anatomical structure of a stomach. A 10 d cell culture showed that printed cells remained a high viability and a steady proliferation, which indicated good biological function of cells in printed tissue scaffolds. This work presents an innovative advance not only in the field of bioprinting but also in the clinical sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.