Abstract

Introduction Gallium-67 (67Ga) has been used as a radionuclide for imaging a variety of solid tumors since 1969. Since then use of various gallium-based radiotracers has been reported. Recently, 67Ga-labeled acetylacetate bis(thiosemicarbazones) (67Ga-AATS) complex with significant tumor accumulation and fast blood clearance has been employed. Materials and Methods In this study, the absorbed dose of 67Ga-AATS in each human organ was evaluated and compared with 67Ga-citrate as the most commonly used form of 67Ga in nuclear medicine. 67Ga was produced via 68Zn(p,2n)67Ga reaction at 30 MeV cyclotron. Moreover, 67Ga-AATS was produced by adding 50 µl of AATS to absolute ethanol (1 mg/ml) in a gallium-containing vial at 80-90 °C. The absorbed dose of each human organ was calculated, using RADAR method, based on biodistribution data in Wistar rats. Results According to the results, 67Ga-AATS was produced with radionuclidic and radiochemical purity higher than 99% and 93%, respectively. The highest absorbed dose was reported in the bone surface (0.401 mGy/MBq), whereas the whole-body absorbed dose was 0.092 mGy/MBq. Conclusion The absorbed dose of each human organ was comparable with the absorbed dose received by each organ after 67Ga-citrate injection. Considering this interesting finding and the significant tumor uptake, it seems that 67Ga-AATS can be used as an appropriate SPECT tracer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call