Abstract

This study resulted in the design, construction and testing of a gas flow proportional counter for in-situ determination of soil contamination. The uniqueness of this detector is the screened material used for the cathode. A Pu-239 source of 0.006 {micro}Ci was mounted to the outside of the cathode to simulate radioactive soil. The detector probe was placed into a laboratory mock-up and tested to determine operating voltage, efficiency and energy resolution. Two gas flow proportional counters were built and tested. The detectors are cylindrical, each with a radius of 1.905 cm, having an anode wire with a radius of 0.0038 cm. The length of the smaller detector S anode was 2.54 cm, and the length of the larger detector S anode was 7.64 cm. Therefore, the active volumes were 28.96 cm{sup 3} and 87.10 cm{sup 3}, respectively, for the small and large detector. An operating voltage of 1975 volts was determined to be sufficient for both detectors. The average efficiency was 2.59 {+-} 0.12% and 76.71 {+-} 10.81% for the small volume and large volume detectors, respectively. The average energy resolution for the low-energy peak of the small detector was 4.24 {+-} 1.28% and for the large-energy peak was 1.37 {+-} 0.66%. The large detectors energy resolution was 17.75 {+-} 3.74%. The smaller detector, with better energy resolution, exhibited a bi-modal spectrum, whereas the larger detector S spectrum centered around a single broad peak.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call