Abstract

This paper describes a preliminary design to realize a 400 X 400 mm<SUP>2</SUP> active deformable mirror in the framework of the LaserMegajoule French program. The proposed design is based on a force control strategy. Forces are generated by specific designed electromechanical actuators and transmitted to a Zerodur mirror through an annular soft pad. This pad is optimized to filter high frequency ripple generated by the spatial sampling of the efforts at the back of the mirror in order to decrease the needed number of actuators, and thus the cost of the deformable mirror, a specific optimization method has been developed and is applied to determine the best actuator pattern fitted on the wavefront aberrations to be corrected. Analysis, calculations, finite elements models, preliminary test and validations on breadboard models have shown that the proposed design in compliant with the functional and operation requirements. A design description and the main justifications, as the guidelines of mirror integration are given in this paper. Due to the simplicity of the concept and the use of validate and mastered technologies at SFIM Industries and REOSC, the design present a good reliability. Furthermore, a complete and very easy to work maintainability is favored by this deformable mirror definition. Each parts of the system is easily removable and replaceable on the laser line without carrying out a heavy procedure and complex tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call