Abstract

The solar receiver is one of the key components of hybrid solar micro gas-turbine systems, which would seem to present a number of advantages when compared with Stirling engine based systems and photovoltaic panels. In this study a solar receiver meeting the specific requirements for integration into a small-scale (10kWel) dish-mounted hybrid solar micro gas-turbine system has been designed with a special focus on the trade-offs between efficiency, pressure drop, material utilization and economic design. A situation analysis, performed using a multi-objective optimizer, has shown that a pressurized configuration, where the solar receiver is placed before the turbine, is superior to an atmospheric configuration with the solar receiver placed after the turbine. Based on these initial design results, coupled CFD/FEM simulations have been performed, allowing detailed analysis of the designs under the expected operating conditions. The results show that the use of volumetric solar receivers to provide heat input to micro gas-turbine based solar dish systems appears to be a promising solution; with material temperatures and material stresses well below permissible limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.