Abstract

This study provides a unique procedure for validating and reconstructing temperature and precipitation data. Although developed from data in Middle Italy, the validation method is intended to be universal, subject to appropriate calibration according to the climate zones analysed. This research is an attempt to create shared applicative procedures that are most of the time only theorized or included in some software without a clear definition of the methods. The purpose is to detect most types of errors according to the procedures for data validation prescribed by the World Meteorological Organization, defining practical operations for each of the five types of data controls: gross error checking, internal consistency check, tolerance test, temporal consistency, and spatial consistency. Temperature and precipitation data over the period 1931–2014 were investigated. The outcomes of this process have led to the removal of 375 records (0.02%) of temperature data from 40 weather stations and 1286 records (1.67%) of precipitation data from 118 weather stations, and 171 data points reconstructed. In conclusion, this work contributes to the development of standardized methodologies to validate climate data and provides an innovative procedure to reconstruct missing data in the absence of reliable reference time series.

Highlights

  • Climate analysis is taking on an increasingly central role in the life of mankind

  • The outcomes of this process have led to the removal of 375 records (0.02%) of temperature data from weather stations and 1286 records (1.67%) of precipitation data from 118 weather stations, and 171 data points reconstructed

  • The quality control and climate data processing methods are developed and standardised through the work of the World Meteorological Organization (WMO), which has been active on this theme since the early1960s, publishing important reports and adopting the most relevant advances in this theme

Read more

Summary

Introduction

Climate analysis is taking on an increasingly central role in the life of mankind. Climate has a great impact on many environmental issues and requires reliable, as well as complete, data. The procedure for deleting possible errors from the data is called validation, while the completion of missing data in a time series is called reconstruction. In this context, the aim of the present study is to define a practical method of data validation and reconstruction that, in the future, could be automated by software. The issue of validation and reconstruction of missing data has been analysed by computer since the. The quality control and climate data processing methods are developed and standardised through the work of the World Meteorological Organization (WMO), which has been active on this theme since the early1960s, publishing important reports (for example, [3]) and adopting the most relevant advances in this theme.

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.