Abstract

<p>The Wum maar is located in the Oku Volcanic group, part of continental sector of the Cameroon Volcanic Line (CVL) in west Africa, which consists of volcanoes active from Eocene to recent. The continental part of the CVL is located on the metamorphic-igneous basement of the Neoproterozoic Central African Orogenic Belt (CAOB), which originated during Gondwana assembly. Some of the CVL lavas contain spinel-facies peridotite and pyroxenite xenoliths giving insight into the mantle lithosphere underlying the CAOB.</p><p>We studied xenolith suite (19 xenoliths) from the Wum maar, comprising 14 lherzolites and 5 websterites. The half of lherzolites (7) consist of minerals with fertile composition (olivine Fo<sub>89</sub>, orthopyroxene Al 0.16-0.19 atoms per formula unit, clinopyroxene Al 0.28-0.31 a pfu, spinel Cr# 0.08-0.13). Clinopyroxene is REE-depleted and has <sup>87</sup>Sr/<sup>86</sup>Sr ratios of 0.7017-0.7021. A reconnaissance study of crystal preferred orientation (CPO) by EBSD shows that at least in part of the rocks the clinopyroxene fabric is very weak, suggesting that its crystallization post-dates the primary deformation event recorded by the olivine-orthopyroxene framework. A smaller part of lherzolites (5) contains clinopyroxene the CPO of which fits that of the olivine-orthopyroxene framework, is LREE-enriched and has <sup>87</sup>Sr/<sup>86</sup>Sr ratios of 0.7027-0.7028. One of these lherzolites contains amphibole (pargasite), which forms aggregates and schlieren and texturally is later than olivine-pyroxene host. CPO of amphibole, ortho- and clinopyroxene is decoupled from that of olivine in that rock. Two lherzolites have slightly depleted mineral compositions (olivine Fo<sub>90-91</sub>, orthopyroxene Al 0.15 apfu, clinopyroxene Al 0.25 a pfu, spinel Cr# 0.18).</p><p>Websterites are dominated by orthopyroxene (Al 0.20-0.21 a pfu) whereas clinopyroxene (Al 0.30-0.31) is subordinate, and is characterized by LREE-depletion and <sup>87</sup>Sr/<sup>86</sup>Sr ratios of 0.7019-0.7020. Spinel occurring in websterites is aluminous (Cr# 0.04-0.06), in some samples subordinate olivine (Fo<sub>90</sub>) occurs. One of the xenoliths consists of millimetric monomineral layers of pyroxenes and olivine chemically identical to those occurring in websterites.  </p><p>The mineral chemical data coupled with mineral fabrics suggest that lherzolites with LREE-depleted clinopyroxene could have originated by late crystallization caused by melt metasomatism. The metasomatic agent is probably best represented by websterites, which contain LREE-depleted clinopyroxene with similar, depleted <sup>87</sup>Sr/<sup>86</sup>Sr of 0.7019-0.7020 (compare to DM value of 0.7026, Workman and Hart 2005), confirming earlier findings of refertilization of the regional lithospheric mantle by highly depleted melts (Tedonkenfack et al. 2021). The addition of amphibole was connected with recrystallization of ortho- and clinopyroxene and with significant change of its <sup>87</sup>Sr/<sup>86</sup>Sr signature to more radiogenic values.</p><p>Funding. This study originated thanks to the project of Polish National Centre of Research NCN 2017/27/B/ST10/00365 to JP. The bilateral Austrian-Polish project WTZ PL 08/2018 enabled extensive microprobe work.</p><p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call