Abstract
Aerosol samples were collected at two coastal suburban stations, Qingdao (China) in 1995–1996 and Liverpool (U.K.) in 1995, respectively. The samples were analyzed to determine the concentrations of trace metals (Cr, Zn, Cu, Co, Ni, Pb, V, and Cd) as well as Al, Fe and Mn. Data were examined to understand the difference of trace metals in aerosols between coastal zones downwind the developing area (near the Yellow Sea) and developed region (near the Irish Sea). The results show that most elements at Qingdao have levels 4–5 times higher than those at Liverpool, particularly for the crust-dominated elements (e.g. Al, Fe and Mn). Moreover, the aerosol composition at Qingdao is higher in spring than in summer, underlying the influence of westerlies and local emissions in combination, whereas seasonal change of aerosol composition is not significant at Liverpool. The enrichment factors for the crustal source elements (EFcrust) at Liverpool are much higher than those at Qingdao. The contributions from the pollutant source (Rp) for some trace metals like Cu, Pb, Zn and Cd are >90% at Qingdao and Liverpool, suggesting overwhelming anthropogenic contributions to these metals. The contributions from crustal source (Rc) for trace metals tend to increase with higher aerosol levels and Al concentration at Qingdao, indicating a good correlation between the crust-dominated component and the air mass. At Liverpool, the Rc values for trace metals are positively correlated with Al concentrations instead of with aerosol mass, suggesting that Al in aerosols represents the crustal component even though the aerosols come from different sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.