Abstract

The present research dealt with the extraction and characterization of mucilage from the Hibiscus sabdariffa leaves. Compared with normal binding agents such as starch and Poly Vinyl Pyrrolidine (PVP), the mucilage of Hibiscus sabdariffa (HSM) was assessed for its binding properties in tablet formulations. Tablets were formulated using HSM, starch and PVP as binders at a various concentration to evaluate its comparative binding efficiency. The compressed tablets were analyze for their quality control tests as per IP. The extracted HSM showed the characteristics of mucilage and good physicochemical properties. The FTIR and thermal analysis compatibility tests showed that there were no significant reactions between the drug and mucilage. Granule properties of various formulations were found to be comparable and have excellent flow characteristics. Post compression parameters suggested that tablets formulated with mucilage had better hardness and friability as that of the tablets prepared with starch and PVP. The formulations exhibited a better and more consistent release as compared to standard formulations using starch and PVP as a binder. The statistical analysis of in vitro dissolution profile by using DD solver software for difference factor (f1), similarity factor (f2), and Rescigno index (ξ) values also indicated promising results. The results notably indicate that binding property of HSM was at par with starch and PVP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.