Abstract

Cells, especially those of the immune system, can form long and thin connections termed tunnelling nanotubes (TNTs). These structures can reach >100 µm in length and, in T-cells, contain actin but no tubulin and are not open ended. T-cell TNTs were found to form following cell contact and to enable the transfer of HIV-1 from an infected- to a connected-T-cell. TNTs are poorly characterised at molecular level. We found Rab11 and tetraspanins, especially CD81, all along T-cells TNTs, whereas Rab4 and Rab35 were absent from these structures. Regarding actin cytoskeleton regulators, Exo70, N-WASP and especially ezrin accumulated at the level of the TNT tip that contacts the connected cell. Phosphoinositides such as PI(4,5)P2 were also concentrated at this level together with HIV-1 Gag. Gag spots on cells and TNTs were essentially immobile, and likely correspond to area of Gag multimerisation for budding to form virus-like particles. Mobility of PHPLCδ , a specific probe for PI(4,5)P2 , was reduced > threefold at the level of TNT basis or tip compared with the cell body. Our study identified the TNT tip as an active zone of actin cytoskeleton reorganisation with the presence of ezrin, Exo70, N-WASP and PI(4,5)P2 . The latter is also known to enable HIV-1 Gag recruitment for viral budding, and the presence of Gag at this level, contacting the connected cell, indicates that the TNT tip is also a favourite place for HIV-1 assembly and budding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.