Abstract
There has been significant attention focused on the impacts of fire frequency and season of burn on ecological processes in the Kruger National Park (KNP). Whilst there has been some examination of these fire effects on soil properties, the explicit linkages of these effects to the hydrology of soils in burnt areas has remained a gap in our understanding. During August 2010, a field scoping campaign was undertaken to assess the impacts, if any, of long-term fire treatments on the hydrology of soils on the experimental burn plots (EBPs) in the KNP. Using various hydrometric and soil physical characterisation instruments soil, hydraulic conductivity and soil strength variations were determined across the extreme fire treatment on the EBPs, the annual August (high fire frequency) plots and the control (no burn) plots, on both the granite and basalt geologies of Pretoriuskop and Satara, respectively. It was found that there were soil hydrological and structural differences to fire treatments on the basalt burn plots, but that these were not as clear on the granite burn plots. In particular, hot, frequent fires appeared to reduce the variation in soil hydraulic conductivity on the annual burn plots on the basalts and led to reduced cohesive soil strength at the surface.Conservation implications: The KNP burn plots are one of the longest running and well studied fire experiments on African savannahs. However, the impacts of fire management on hydrological processes in these water-limited ecosystems remains a gap in our understanding and needs to be considered within the context of climate and land-use changes in the savannah biome.
Highlights
Savannahs are tropical grasslands with scattered trees; they occupy about 20% of the land surface of the Earth and 40% of Africa (Scholes & Hall 1996)
The results of Ksat tests at depths between 5 cm and 30 cm revealed that soils on the granite experimental burn plots (EBPs) have, on average, a greater hydraulic conductivity on the annual frequent burn plots than the control plots; this was most noticeable at Kambeni and Shabeni
This study indicated interesting geologically specific feedbacks between fire and soil hydrology
Summary
Savannahs are tropical grasslands with scattered trees; they occupy about 20% of the land surface of the Earth and 40% of Africa (Scholes & Hall 1996). These ecosystems are dynamic in their structure, composition and function. Studies elsewhere include mountain catchments under exotic forestry (Scott 1997) and fynbos (Lindley, Bosch & Van Wyk 1988) in South Africa; few studies have examined explicitly pyrohydrological interactions and the role of various burning regimes within African savannahs (Scholes & Walker 1993)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.