Abstract

The trial wave function commonly used in the quantum Monte Carlo method consists of the product of up-spin and down-spin Slater determinants, allowing accurate calculations of multielectronic properties, although it is not antisymmetric under the exchange of electrons with opposite spins. An alternative description that overcomes these limitations using the Nth-order density matrix was already presented. This study introduces two new strategies based on the Dirac-Fock density matrix for QMC that still fully preserve antisymmetry and electron indistinguishability. Simulations are performed for the ground and excited states of He, Li, and Be showing that the present formulation and the conventional separation of spins are appropriate for a correct description of these systems, except for singlet excited states of the He and Be atoms, and that a part of the antisymmetry (antiparallel spins) can be neglected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.