Abstract

BackgroundManganese based agents are intracellular and accumulate inside myocytes allowing for different imaging strategies compared to gadolinium contrasts. While previous agents release manganese very slowly in the circulation, MnCl2 allows for rapid Mn2+ uptake in myocytes, creating a memory effect that can be potentially explored. Data on animal models are very encouraging but the safety and efficacy of this approach in humans has not yet been investigated. Therefore, our objectives were to study the safety and efficacy of a rapid infusion of manganese chloride (MnCl2) for cardiovascular magnetic resonance (CMR) in humans.MethodsFifteen healthy volunteers underwent a CMR scan on a 1.5 T scanner. Before the infusion, cardiac function was calculated and images of a short axis mid-ventricular slice were obtained using a 2D and 3D gradient-echo inversion recovery (GRE-IR) sequence, a phase-sensitive IR sequence and a single breath-hold segmented IR prepared steady-state precession acquisition for T1 calculations. MnCl2 was infused over three minutes at a total dose of 5 μMol/kg. Immediately after the infusion, and at 15 and 30 minutes later, new images were obtained and cardiac function re-evaluated.ResultsThere was a significant decrease in T1 values compared to baseline, sustained up to 30 minutes after the MnCl2 infusion (pre,839 ± 281 ms; 0 min, 684 ± 99; 15 min, 714 ± 168; 30 min, 706 ± 172, P = 0.003). The 2D and 3D GRE-IR sequence showed the greatest increase in signal-to-noise ratio compared to the other sequences (baseline 6.6 ± 4.2 and 9.7 ± 5.3; 0 min, 11.3 ± 4.1 and 15.0 ± 8.7; 15 min, 10.8 ± 4.0 and 16.9 ± 10.2; 30 min, 10.6 ± 5.2 and 16.5 ± 8.3, P < 0.001 for both). There was a slight increase in systolic pressure and heart rate after three and four minutes of the infusion with normalization of these parameters thereafter. Patients showed good tolerance to MnCl2 with no major adverse events, despite all reporting transient facial flush.ConclusionsIn the short term, MnCl2 appears safe for human use. It effectively decreases myocardium T1, maintaining this effect for a relatively long period of time and allowing for the development of new imaging strategies in CMR, especially in ischemia research.

Highlights

  • Manganese based agents are intracellular and accumulate inside myocytes allowing for different imaging strategies compared to gadolinium contrasts

  • Because MnCl2 releases Mn2+ much more rapidly than manganese dipyridoxyl-diphosphate (MnDPDP) allowing for more rapid uptake of the free manganese ions by myocytes, it may in one hand promote deleterious effects on heart function due to direct competition with Ca2+ with possible decrease in inotropism [13] at the same time providing for potential advantages in cardiac imaging techniques due to its long lasting intracellular properties

  • Efficacy After MnCl2 infusion there was a significant increase in mean Signal to noise ratio (SNR) in all sequences analyzed except in the sIRSSFP sequence (Table 1)

Read more

Summary

Introduction

Manganese based agents are intracellular and accumulate inside myocytes allowing for different imaging strategies compared to gadolinium contrasts. Our objectives were to study the safety and efficacy of a rapid infusion of manganese chloride (MnCl2) for cardiovascular magnetic resonance (CMR) in humans. Due to competition with calcium for voltage-gated channels there has always been a safety concern regarding the use of manganese in high concentrations because of the possibility of acute heart failure or even cardio-pulmonary arrest [10]. Because MnCl2 releases Mn2+ much more rapidly than MnDPDP allowing for more rapid uptake of the free manganese ions by myocytes, it may in one hand promote deleterious effects on heart function due to direct competition with Ca2+ with possible decrease in inotropism [13] at the same time providing for potential advantages in cardiac imaging techniques due to its long lasting intracellular properties

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.