Abstract

The generalized constitutive model relating the resilient modulus (MR) of flexible pavement layer materials to stress state, adopted by the Mechanistic-Empirical Pavement Design Guide (MEPDG), contains a set of constants known as k-values (k1, k2, and k3) which are associated with the physical state of the layer materials. In Ghana, natural gravels constitute the predominant and sometimes the sole layer materials for most flexible pavements yet representative k-values of gravel materials, have not been determined to permit full application and implementation of the mechanistic-empirical design concept to pavements involving such materials. In this study, k-values characterising typical natural quartzitic gravels used for road construction in the country were derived by regression techniques from MR values determined using laboratory repeated load triaxial test. Using multiple linear regression technique, correlation relationships were then developed between the k-values and the physical properties of the gravels, namely, percentages of materials passing the 9.5 mm (P9.5) and 2.0 mm (P2.0) sieves, liquid limit (LL), maximum dry density (ρdmax), and optimum moisture content (wopt). The regression analysis returned k1 values which ranged between 441 and 958 with a mean of 516; k2 which varied between 0.0636 and 0.2168 with a mean value of 0.1216; and, k3 values which ranged between 0.1257 and 3.1590 with a mean value of 1.723. Contrary to what is mostly reported in literature, the analysis returned positive k3 values for all but one gravel material, suggesting stress hardening under octahedral shear stress for those materials. While an expanded sample base is required to fully characterize the whole gamut of natural gravels used in pavement construction in the country, this study on limited quartzitic gravel samples has given a good indication of strong linear correlations between the k-values and the index properties of the gravels, to permit estimates of the constants for such gravels be made where capability and opportunity for conducting resilient modulus tests do not exist.However, further work is recommended to fully characterise the exact nature of k3 values for quartzitic gravels in the country.

Highlights

  • In the mechanistic-empirical (M-E) design/analysis of multi-layer flexible pavement structures, the resilient response of layer materials to repeated traffic loading is quantified by the resilient modulus (MR) parameter

  • The generalized constitutive model relating the resilient modulus (MR) of flexible pavement layer materials to stress state, adopted by the Mechanistic-Empirical Pavement Design Guide (MEPDG), contains a set of constants known as k-values (k1, k2, and k3) which are associated with the physical state of the layer materials

  • This study set out to determine the resilient modulus of quartzitic natural gravels using repeated load triaxial test and to evaluate the k-values (k1, k2, k3) of the materials thereof

Read more

Summary

Introduction

In the mechanistic-empirical (M-E) design/analysis of multi-layer flexible pavement structures, the resilient response of layer materials to repeated traffic loading is quantified by the resilient modulus (MR) parameter. Because MR is a basic mechanistic material property, its estimation through correlations with empirical soil strength parameters is not considered appropriate as the parameters do not reflect the conditions in a pavement under repeated traffic loading [2]. In empirical pavement design approaches, representative resilient modulus values are assigned to layer materials irrespective of position in the pavement-subgrade system. This is considered a limitation since the resilient modulus of unbound soil/aggregate layers depends on stress state and is known to increase with increasing bulk stress and confining stress [3]. Layer materials, depending on their position in the pavement-subgrade system, come under different vertical stresses from the overburden and traffic loading as well as horizontal stresses from confinement

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call