Abstract

Early-onset primary torsion dystonia (DYT1) is the most severe and common form of hereditary movement disorders, characterized by sustained twisting contractures that begin in childhood, which is caused in majority of cases by a 3-bp deletion of the DYT1 gene on chromosome 9q34 at the heterozygote state. As there is no effective treatment of this disease, preimplantation genetic diagnosis (PGD) may be a useful option for at-risk couples to establish an DYT1 mutation-free pregnancy. PGD was performed for two obligate carriers of the DYT1 3-bp deletion, using blastomere testing to preselect the mutation-free embryos, based on mutation analysis with simultaneous testing of the three closely linked markers, D9S62, D9S63 and ASS. Of 19 tested blastomeres in three cycles, 17 had conclusive information about the mutation and linked markers, of which eight were predicted to be free of 3-bp deletion. Six of these embryos were transferred back to patients, two in each cycle, yielding singleton DYT1 3-bp deletion-free clinical pregnancies in two. One of these pregnancies was terminated due to severe anencephaly and the other resulted in birth of a mutation-free child. This is the first PGD for primary torsion dystonia, providing an alternative for those at-risk couples who cannot accept prenatal diagnosis and termination of pregnancy as an option for avoiding early onset torsion dystonia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.