Abstract

This study investigated the effects of moderate hypoxia pre-exposure on energy metabolism, antioxidant defence and mitophagy in the liver of the large yellow croaker Larimichthys crocea exposed to Cu. Fish were pre-exposed to either normoxia or hypoxia (~3.0 mg L−1, 42% O2 saturation) for 48 h, and subsequently were subjected to either control (without Cu addition) or Cu (168 μg L−1) under normoxic conditions for another 48 h. Copper exposure under normoxia induced Cu toxicity that increased mortality, the production of reactive oxygen species (ROS) and malondialdehyde, and aberrant hepatic mitochondrial ultrastructure. Interestingly, hypoxia pre-exposure improved energy metabolism, antioxidant ability and mitophagy response, and reduced the Cu content to inhibit Cu toxicity, reflecting the enhanced survival rate and reduced oxidative damage. In these processes, hypoxia-inducible factor-1α (HIF-1α), transcription factors NFE2-related nuclear factor 2 (Nrf2), and forkhead box O-3 (FoxO3) mRNA levels were correlated with expression of genes related to energy metabolism, antioxidant defence and mitophagy, respectively, indicating HIF-1α, Nrf2, and FoxO3 are required for the induction of their respective target genes. Overall, moderate hypoxia pre-exposure was able to generate adaptive responses to mitigate Cu-induced toxicological effects, underlining a central role of hormesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.