Abstract

Activation of polymorphonuclear neutrophils (PMNs) is thought to contribute to traumatic brain injury (TBI). Since hypertonic fluids can inhibit PMN activation, we studied whether hypertonic fluid resuscitation can reduce excessive PMN activation in TBI patients. Trauma patients with severe TBI were resuscitated with 250 mL of either 7.5% hypertonic saline (HS; n = 22), HS + 6% dextran-70 (HSD; n = 22), or 0.9% normal saline (NS; n = 39), and blood samples were collected on hospital admission and 12 and 24 h after resuscitation. Polymorphonuclear neutrophil activation (CD11b, CD62L, CD64) and degranulation (CD63, CD66b, CD35) markers and oxidative-burst activity, as well as spontaneous PMN apoptosis were measured by flow cytometry. Relative to healthy controls, TBI patients showed increased PMN activation and decreased apoptosis of PMNs. In the HS group, but not in the HSD group, markers of PMN adhesion (CD11b, CD64) and degranulation (CD35, CD66b) were significantly lower than those in the NS group. These effects were particularly pronounced 12 h after resuscitation. Treatment with HS and HSD inhibited PMN oxidative burst responses compared with NS-treated patients. Hypertonic saline alone partially restored delayed PMN apoptosis. Despite these differences, the groups did not differ in clinical outcome parameters such as mortality and Extended Glasgow Outcome Scale. This study demonstrates that prehospital resuscitation with HS can partially restore normal PMN activity and the apoptotic behavior of PMNs, whereas resuscitation with HSD was largely ineffective. Although the results are intriguing, additional research will be required to translate these effects of HS into treatment strategies that improve clinical outcome in TBI patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call