Abstract

Prehistoric and modern records of Hg in peats from the lower Amur River basin, eastern Asia, were investigated. The Hg accumulation rates (AR) of two 14C-dated cores from Holocene raised and blanket peats were determined. The low and monotonous Hg AR values of the raised peats determined in the lower part of the core (mean 1.9 μg Hg per m2 per year) represent prehistoric Hg inputs from the atmosphere. A sharp increase in Hg AR was determined upward of 52 cm depths (∼1600 year BP) (max 17.0 Hg μg per m2 per year), which apparently reflects the modern increase in global Hg emissions. The Hg loads in the blanket peats were apparently defined by a combined input from the atmosphere and the watershed followed by diagenetic redistribution. One major peak (max 12.0 μg Hg per m2 per year) coincided with increased Corg contents in herbaceous and sphagnum peat formed in the warming and wet climate of the early Holocene. Another peak (11.8 μg Hg per m2 per year) correlated both with the accumulation of Fe/Mn compounds and the warm and wet climate of the Holocene Climate Optimum. Minima Hg AR values coincided with the weakening of the East Asia Monsoon and cold and dry climate periods. In the uppermost layers, the Hg AR increased again up to 7.3 μg Hg per m2 per year, most likely due to anthropogenic pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.