Abstract

Prehension movements were examined in freely behaving monkeys and compared with the well-known characteristics of human movements. The degree of independence of the components of movements (i.e., reaching and grasping) was investigated in animals trained to reach for and grasp three-dimensional objects. To this aim, the kinematics of prehension movements was recorded using an Optotrak system in two tasks. In one task, monkeys grasped a small or a large object (size task), in the other, they grasped an object of constant size placed at three different spatial locations (location task). We found that object size and its location affected both reaching and grasping. In particular, in the size task, we found that the maximum grip aperture strongly depended on the selection of the grip and not only on the size of an object. Our results also revealed that, in monkeys as well as in humans, the reaching parameters are highly sensitive to task-related constraints such as accuracy demands. The results of the location task showed a difference between rightward and leftward movements, a pattern of grip aperture that varied across animals, and a large degree of coordination between the two components. These findings argue against a strict postulate of independence between the visuo-motor channels, favoring instead the idea of variable degrees of coordination between the reach and grasp components depending on the task demands. Finally, this work emphasizes the relevance of studying monkey's prehension movements as a useful step to the understanding of visuo-motor control in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call