Abstract

We present first results from high-resolution tree + smoothed particle hydrodynamics simulations of galaxy clusters and groups that are aimed at studying the effect of nongravitational heating on the entropy of the intracluster medium (ICM). We simulate three systems having emission-weighted temperatures Tew 0.6, 1, and 3 keV with spatial resolutions better than 1% of the virial radius. We consider the effect of different prescriptions for nongravitational ICM heating, such as supernova energy feedback, as predicted by semianalytical models of galaxy formation, and two different minimum entropy floors, Sfl = 50 and 100 keV cm2, imposed at z = 3. Simulations with only gravitational heating nicely reproduce predictions from self-similar ICM models, while extra heating is shown to break the self-similarity, by a degree that depends on the total injected energy and on the cluster mass. We use the observational results on the excess entropy in central regions of galaxy systems to constrain the amount of extra heating required. We find that by setting the entropy floor Sfl = 50 keV cm2, which corresponds to an extra heating energy of about 1 keV per particle, we are able to reproduce the observed excess of ICM entropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.