Abstract
Amorphous sputter-deposited NiTi thin films were subjected to pulsed, melt-mediated laser crystallization techniques to engineer their microstructure. The effects of laser processing of pre-heated films are examined. Laser processing of films at an elevated temperature has a significant effect on the rate with which solidification occurs and therefore may be used as an added parameter to control the resulting microstructure. It is seen that the temperature at which processing is carried out has significant implications for the resulting phase and microstructure, and therefore mechanical properties. Furthermore, the microstructural effects of varying incident laser energy density are examined via atomic force microscopy (AFM), scanning electron microscopy (SEM) and x-ray diffraction (XRD), and mechanical/shape memory properties are characterized via nanoindentation.Amorphous sputter-deposited NiTi thin films were subjected to pulsed, melt-mediated laser crystallization techniques to engineer their microstructure. The effects of laser processing of pre-heated films are examined. Laser processing of films at an elevated temperature has a significant effect on the rate with which solidification occurs and therefore may be used as an added parameter to control the resulting microstructure. It is seen that the temperature at which processing is carried out has significant implications for the resulting phase and microstructure, and therefore mechanical properties. Furthermore, the microstructural effects of varying incident laser energy density are examined via atomic force microscopy (AFM), scanning electron microscopy (SEM) and x-ray diffraction (XRD), and mechanical/shape memory properties are characterized via nanoindentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.