Abstract

Although superficial scald (SS) is well characterized on apples, there are only a few insights concerning the influence that agronomic and management variability may have on the occurrence of this physiological disorder on pears. In this study, we aimed to improve our understanding of the effect of different preharvest factors on SS development using a multivariate statistical approach. Pears (Pyrus communis L.) cv “Abate Fetel” were picked during two consecutive seasons (2018-2019 and 2019-2020) from twenty-three commercial orchards from three growing areas (Modena, Ferrara, and Ravenna provinces) in the Emilia-Romagna region of Italy. Bioclimatic indices such as weather and soil, agronomic management such fertilization and irrigation, orchard features such as rootstock and training systems, and SS incidence were carried out at harvest and periodically postharvest in all producers. Two different storage scenarios (regular atmosphere and use of 1-MCP) were also evaluated. Our data in both seasons showed high heterogeneity between farms for SS symptoms after cold storage either in the regular atmosphere or with 1-MCP treatment. Nevertheless, in 2018, all the producers showed SS at the end of the storage season, but in 2019 some of them did not exhibit SS for up to 5 months. In fact, some preharvest factors changed considerably between the two seasons such as yield and weather conditions. Indeed, some factors seem to affect SS in both growing seasons. Some can increase its occurrences such as physiological and agronomical factors: high yields, late date of blooming, heavy downpours, improper irrigation management (low watering frequency and high volumes), nitrogen (included that deriving from organic matter), soil texture (presence of clay), orchard age, and canopy volume in relation to training system and rootstock. Others can decrease SS such as climatic and management factors: late harvest dates, rain, gibberellins, calcium, manure, absence of antihail nets or use of photoselective nets, and site (probably related to better soils toward the Adriatic coast). Initial preharvest variability is an important factor that modulates physiological plant stress and, subsequently, the SS after cold storage in “Abate Fetel” pears. Multivariate techniques could represent useful tools to identify reliable multiyear preharvest variables for SS control in pear fruit different batches.

Highlights

  • The need to investigate fruit quality and postharvest management during long-term storage is accentuated by the fact that many Italian farmers have increased their fall productions, notoriously more demanding in terms of their management in the postharvest phase to avoid relevant economic losses [1].Superficial scald (SS) is one of the main causes of product loss in winter pears such as the “Abate Fetel” variety inside storage cold chambers [2, 3]

  • “Abate Fetel” pears certified by Protected Geographical Indication (IGP) should guarantee consistent quality levels, the unavoidable variability arises from growing environment and production systems, which influence major preharvest factors [28]

  • Other researchers reported that “Passe Crassane” pear from less productive trees have been shown to be more susceptible to browning disorders [40]. Considering both seasons, we found that late harvest dates, expressed as days after full bloom (DAFB), can prevent the occurrence of SS

Read more

Summary

Introduction

The need to investigate fruit quality and postharvest management during long-term storage is accentuated by the fact that many Italian farmers have increased their fall productions (e.g., apples, pears, and kiwifruits), notoriously more demanding in terms of their management in the postharvest phase to avoid relevant economic losses [1]. Superficial scald (SS) is one of the main causes of product loss in winter pears such as the “Abate Fetel” variety inside storage cold chambers [2, 3]. The study of aetiology is complex, but two main factors can be identified: cold damage and oxidative stress [5,6,7]. Attention has been focused on the volatile α-farnesene compound and its oxidation process, considered to be the main responsible for this disorder [8,9,10]. The rapid and nondestructive analysis of the VOC array carried out by PTR-ToF-MS identified 6-methyl-5-hepten-2-one (MHO)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.