Abstract
Changes in the endometrium prior to implantation may be critical in predicting pregnancy outcomes. This study shows that the endocrine system directs positional changes in CCR7+ cells before implantation, which may be critical for developing maternal tolerance. Suppression of the maternal immune system is vital for the implantation of the semi-allogeneic embryo. Although progress in understanding the dialogue between mother and embryo has been made, key interactions between maternal immune cells, hormones, and chemokines remain elusive. Uterine expression of the C-C chemokine receptor type 7 (CCR7) could recruit T regulatory cells and facilitate localized immune suppression. To test this concept, Ccr7 mRNA and protein were assessed in uterine tissue. Ccr7 mRNA expression peaked at day 4 in pregnant rat uteri and then declined at days 5 and 6. CCR7 protein showed similar quantitative changes. To test if female sex steroids affected the spatial distribution of CCR7-expressing cells, uteri from ovariectomized rats, progesterone-pretreated rats (2 mg daily), and progesterone-pretreated rats injected with estradiol (0.2 µg) were analyzed. Progesterone increased CCR7-positive (+) cells in the antimesometrial stroma. Progesterone and estradiol increased CCR7+ cells in the mesometrial stroma. Estradiol increased the density of cluster of differentiation 4 (CD4) positive cells in the mesometrial stromal region over progesterone alone. The density of cells expressing the T regulatory cell marker, forkhead box protein 3 (FOXP3), increased in the antimesometrial stroma in response to progesterone alone. Progesterone and estradiol increased FOXP3+ cells in the antimesometrial region of the stroma. Co-localization of CCR7, CD4, and FOXP3 in the stroma suggests CCR7+ cells are T regulatory cells. Polarization of CCR7+ cells in the endometrial stroma was an intrinsic response regulated by sex steroids and did not require the presence of an embryo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.