Abstract
Pregnancy-associated plasma protein-A (PAPP-A) is a large metalloproteinase specifically cleaving insulin-like growth factor (IGF) binding proteins, causing increased IGF bioavailability and, hence, local regulation of IGF receptor activation. We have identified two highly conserved zebrafish homologs of the human PAPP-A gene. Expression of zebrafish Papp-a, one of the two paralogs, begins during gastrulation and persists throughout the first week of development, and analyses demonstrate highly conserved patterns of expression between adult zebrafish, humans, and mice. We show that the specific knockdown of zebrafish papp-a limits the developmental rate beginning during gastrulation without affecting the normal patterning of the embryo. This phenotype is different from those resulting from deficiency of Igf receptor or ligand in zebrafish, suggesting a function of Papp-a outside of the Igf system. Biochemical analysis of recombinant zebrafish Papp-a demonstrates conservation of proteolytic activity, specificity, and the intrinsic regulatory mechanism. However, in vitro transcribed mRNA, which encodes a proteolytically inactive Papp-a mutant, recues the papp-a knockdown phenotype as efficiently as wild-type Papp-a. Thus, the developmental phenotype of papp-a knockdown is not a consequence of lacking Papp-a proteolytic activity. We conclude that Papp-a possesses biological functions independent of its proteolytic activity. Our data represent the first evidence for a non-proteolytic function of PAPP-A.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.