Abstract

Attentional processing is a crucial early stage in cognition and is subject to “top-down” regulation by prefrontal cortex (PFC). Top-down regulation involves modification of input processing in cortical and subcortical areas, including the posterior parietal cortex (PPC). Cortical cholinergic inputs, originating from the basal forebrain cholinergic system, have been demonstrated to mediate important aspects of attentional processing. The present study investigated the ability of cholinergic and glutamatergic transmission within PFC to regulate acetylcholine (ACh) release in PPC. The first set of experiments demonstrated increases in ACh efflux in PPC following AMPA administration into the PFC. These increases were antagonized by co-administration of the AMPA receptor antagonist DNQX into the PFC. The second set of experiments demonstrated that administration of carbachol, but not nicotine, into the PFC also increased ACh efflux in PPC. The effects of carbachol were attenuated by co-administration (into PFC) of a muscarinic antagonist (atropine) and partially attenuated by the nicotine antagonist mecamylamine and DNQX. Perfusion of carbachol, nicotine, or AMPA into the PPC did not affect PFC ACh efflux, suggesting that these cortical interactions are not bi-directional. These studies demonstrate the capacity of the PFC to regulate ACh release in the PPC via glutamatergic and cholinergic prefrontal mechanisms. Prefrontal regulation of ACh release elsewhere in the cortex is hypothesized to contribute to the cognitive optimization of input processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call