Abstract

Traveling waves of neural activity are frequently observed to occur in concert with the presentation of a sensory stimulus or the execution of a movement. Although such waves have been studied for decades, little is known about their function. Here we show that traveling waves in the primate extrastriate visual cortex provide a means of integrating sensory and motor signals. Specifically, we describe a traveling wave of local field potential (LFP) activity in cortical area V4 of macaque monkeys that is triggered by the execution of saccadic eye movements. These waves sweep across the V4 retinotopic map, following a consistent path from the foveal to the peripheral representations of space; their amplitudes correlate with the direction and size of each saccade. Moreover, these waves are associated with a reorganization of the postsaccadic neuronal firing patterns, which follow a similar retinotopic progression, potentially prioritizing the processing of behaviorally relevant stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call