Abstract

Multiple genome studies have discovered that variation in deleted in colorectal carcinoma (Dcc) at transcription and translation level were associated with the occurrences of psychiatric disorders. Yet, little is known about the function of Dcc in schizophrenia (SCZ)-related behavioral abnormalities and the efficacy of antipsychotic drugs in vivo. Here, we used an animal model of prefrontal cortex-specific knockdown (KD) of Dcc in adult C57BL/6 mice to study the attention deficits and impaired locomotor activity. Our results supported a critical role of Dcc deletion in SCZ-related behaviors. Notably, olanzapine rescued the SCZ-related behaviors in the MK801-treated mice but not in the cortex-specific Dcc KD mice, indicating that Dcc play a critical in the mechanism of antipsychotic effects of olanzapine. Knockdown of Dcc in prefrontal cortex results in glutamatergic dysfunction, including defects in glutamine synthetase and postsynaptic maturation. As one of the major risk factors of the degree of antipsychotic response, Dcc deletion-induced glutamatergic dysfunction may be involved in the underlying mechanism of treatment resistance of olanzapine. Our findings identified Dcc deletion-mediated SCZ-related behavioral defects, which serve as a valuable animal model for study of SCZ and amenable to targeted investigations in mechanistic hypotheses of the mechanism underlying glutamatergic dysfunction-induced antipsychotic treatment resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call