Abstract

Recent work has suggested that prefrontal cortex (PFC) plays a key role in context-dependent perceptual decision-making. Here we address that role using a new method for identifying task-relevant dimensions of neural population activity. Specifically, we show that PFC has a multi-dimensional code for context, decisions, and both relevant and irrelevant sensory information. Moreover, these representations evolve in time, with an early linear accumulation phase followed by a phase with rotational dynamics. We identify the dimensions of neural activity associated with these phases, and show that they do not arise from distinct populations, but of a single population with broad tuning characteristics. Finally, we use model-based decoding to show that the transition from linear to rotational dynamics coincides with a plateau in decoding accuracy, revealing that rotational dynamics in PFC preserve sensory choice information for the duration of the stimulus integration period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.