Abstract

Symbol systems such as numbers and language are of paramount importance to human cognition. In number theory, numbers are symbolic signs embedded in a system of higher-order sign-sign relations. During ontogeny, numerical competence passes through different referential sign relations with increasing complexity, from an iconic to an indexical and finally symbolic stage. Animals such as nonhuman primates are constrained to indexical reference. However, because symbolic reference emerges from indexical reference, behavioral and neuronal representations of semantic sign-numerosity associations in animals can elucidate the precursors of symbol systems. A neurobiological explanation of how numerical signs take their meaning is proposed by suggesting that neurons in the granular prefrontal cortex, a novel brain structure evolved in primates, enable high-order associations and establish links between nonsymbolic numerosities and arbitrary signs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.