Abstract

Coping is defined as the behavioral and physiological effort made to master stressful situations. The ability to cope with stress leads either to healthy or to pathogenic outcomes. The medial prefrontal cortex (mpFC) and amygdala are acknowledged as having a major role in stress-related behaviors, and mpFC has a critical role in the regulation of amygdala-mediated arousal in response to emotionally salient stimuli. Prefrontal cortical serotonin (5-hydroxytryptamine (5-HT)) is involved in corticolimbic circuitry, and GABA has a major role in amygdala functioning. Here, using mice, it was assessed whether amygdalar GABA regulation by prefrontal 5-HT is involved in processing stressful experiences and in determining coping outcomes. First (experiment 1), bilateral selective 5-HT depletion in mpFC of mice reduced GABA release induced by stress in basolateral amygdala (BLA) and passive coping in the Forced Swimming Test (FST) (experiment 2). Moreover, prefrontal-amygdala disconnection procedure that combined a selective unilateral 5-HT depletion of mpFC and infusion of an inhibitor of GABA synthesis into the contralateral BLA, thereby to disrupt prefrontal-amygdalar serial connectivity bilaterally, showed that disconnection selectively decreases immobility in the FST. These results point to prefrontal/amygdala connectivity mediated by 5-HT and GABA transmission as a critical neural mechanism in stress-induced behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.