Abstract
Prefrontal cortical activation varies by walking task and is a marker of attentional demand. We compared prefrontal activation by functional near-infrared spectroscopy (fNIRS) to accelerometry-derived gait quality. We hypothesized greater activation with lower gait quality (greater step-time coefficient-of-variation, decreased cadence, smoothness, regularity, and signal variability). Participants (n=114; age 74.4±6.0 years, 59.6% female) were independently ambulating individuals >64 years. Attentional (reciting every-other alphabet letter) and physical (uneven surface) challenges mimicked community mobility and provided four 15m walking conditions: even, uneven, ABC-even, and ABC-uneven. fNIRS data were referenced to quiet standing and averaged within left and right hemispheres. Gait metrics from a tri-axial accelerometer at the lower-back included cadence (steps/min), step-time coefficient-of-variation, signal variability (standard deviation), smoothness (harmonic ratio), and regularity (entropy). Associations between fNIRS and gait were quantified using Pearson correlations (α=0.05). Results were consistent across hemispheres, gait axes, and robust to adjustment for age and gait speed; we report unadjusted coefficients for left hemisphere and anterior-posterior gait direction. Greater prefrontal activation was associated with slower cadence (r=-0.220, p=0.019), lower signal variability (r=-0.228, p=0.015), and reduced smoothness (r=-0.194, p=0.039) during ABC-even. No relation was observed for step-time coefficient-of-variation or regularity. Results were similar for the ABC-uneven condition, except there was no association with gait smoothness but was with step-time coefficient-of-variation (r=0.25, p=0.007). Prefrontal activation was not correlated to gait quality in non-ABC conditions. Our findings support our hypothesis only during the ABC challenge, suggesting that older adults may rely on prefrontal activation to complete attentional but not physical challenges during gait.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.