Abstract

Pt-based catalysts have been widely used for the removal of short-chain volatile organic compounds (VOCs), such as propane. In this study, we synthesized Pt nanoparticles with a size of ca. 2.4 nm and loaded them on various fine-shaped CeO2 with different facets to investigate the effect of CeO2 morphology on the complete oxidation of propane. The Pt/CeO2-o catalyst with {111} facets exhibited superior catalytic activity compared to the Pt/CeO2-r catalyst with {110} and {100} facets. Specifically, the turnover frequency (TOF) value of Pt/CeO2-o was 1.8 times higher than that of Pt/CeO2-r. Moreover, Pt/CeO2-o showed outstanding long-term stability during 50 h. X-ray photoelectron spectroscopy (XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) revealed that the excellent performance of Pt/CeO2-o is due to the prevalence of metallic Pt species, which promotes C-C bond cleavage and facilitates the rapid removal of surface formate species. In contrast, a stronger metal-support interaction in Pt/CeO2-r leads to easier oxidation of Pt species and the accumulation of intermediates, which is detrimental to the catalytic activity. Our work provides insight into the oxidation of propane on different nanoshaped Pt/CeO2 catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.