Abstract

Large-scale TA15 (Ti–6Al–2Zr–1Mo–1V) titanium alloy bulkhead is a key lightweight load-bearing structure part in an aircraft, which has a large plane view and has a complex shape with high ribs and thin webs. In its forging process, the forming defects, such as folding and under-filling are prone to occurrence. The near-net shape forming with saving force of this large-scale complex component can be realized with proper preform design combining local loading condition. By analyzing isothermal local loading process characteristic of large-scale bulkhead, it indicates that the simple unequal-thickness billet is suitable for small lot manufacture of large-scale TA15 titanium alloy bulkhead. Considering the geometry and forming characteristics, such as large dimension, complex shape, mass data, etc., a design method of unequal-thickness billet using analytical analysis and numerical simulation is proposed. The preform for a large-scale TA15 titanium alloy bulkhead is designed by the proposed method. The basic three-dimensional shape of billet is determined by the analytical models based on local loading features, and the basic billet is modified according to numerical simulation result and considering the local loading forming characteristic, and then the preform without resulting in folding and under-filling can be obtained after two modifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.