Abstract
This article focuses on the problem of prefixed-time synchronization for stochastic multicoupled delay dynamic networks with reaction-diffusion terms and discontinuous activation by means of local intermittent sampling control. Notably, unlike the existing common fixed-time synchronization, this article puts forward a new synchronization concept, prefixed-time synchronization, based on the fact that stochastic noise and discontinuous activation can be seen everywhere in practical engineering, which can effectively perfect and improve the existing works. Specifically, a local intermittent in the time domain and point sampling control strategy in the spatial domain is proposed instead of a simple single intermittent control approach, which greatly reduces the control cost. In addition, by some effective means, including the famous Young's inequality, Jensen's inequality, and Hölder's inequality, we obtain two different synchronization criteria of the networks without delay and with multicoupling delays and deeply reveal the quantitative relationship among control period, point sampling length, and network scale. Finally, a numerical example is given to verify the effectiveness of the developed method and the practicability by Chua's circuit model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.