Abstract
Traditional frequent pattern mining considers equal profit/weight value of every item. Weighted Frequent Pattern (WFP) mining becomes an important research issue in data mining and knowledge discovery by considering different weights for different items. Existing algorithms in this area are based on fixed weight. But in our real world scenarios the price/weight/importance of a pattern may vary frequently due to some unavoidable situations. Tracking these dynamic changes is very necessary in different application area such as retail market basket data analysis and web click stream management. In this paper, we propose a novel concept of dynamic weight and an algorithm DWFPM (dynamic weighted frequent pattern mining). Our algorithm can handle the situation where price/weight of a pattern may vary dynamically. It scans the database exactly once and also eligible for real time data processing. To our knowledge, this is the first research work to mine weighted frequent patterns using dynamic weights. Extensive performance analyses show that our algorithm is very efficient and scalable for WFP mining using dynamic weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.