Abstract

Calcium silicate hydrate (C–S–H) is the primary binding phase of cement-based and alkali-activated materials. The preferred orientation of C–S–H under non-hydrostatic pressure (e.g., uniaxial/biaxial load) is overlooked yet crucial in understanding concrete's multiscale mechanical performance. Here, we unveil the texture formation of C–S–H under compressive deviatoric stress, S, from 0 to ∼200 MPa, using high-pressure X-ray diffraction. Texture initiated at S < 12 MPa: the c-axis (normal to the basal plane) of C–S–H nanocrystallites preferentially re-oriented towards the direction of the principal compressive stress. Below S ∼100 MPa, the preferred orientation intensified through translation and rotation of C–S–H nanocrystallites; above ∼100 MPa, the texture stopped growing then weakened, suggesting internal transformations of C–S–H nanocrystallites. The time-dependence of the preferred orientation development is unveiled by the texture weakening after full unloading. The findings implicate that concrete creep under service loads is contributed by the intergranular preferential re-orientation of C–S–H nanocrystallites, not interlayer sliding or silicate chain breakage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call