Abstract

Over sixty syntectonic deformation experiments in uniaxial compression have been done on fine-grained limestones in the stability fields of calcite I, calcite II and aragonite. X-ray techniques and spherical harmonic analysis of the data were used to determine preferred orientation quantitatively, and inverse pole-figures were derived for these axially symmetric specimens. They display in most cases strong preferred orientation which varies as a function of the experimental conditions, mainly temperature and pressure. At temperatures below 350° C recrystallization is lacking and flattened grains indicate that translation, twin gliding and kinking have been the dominant deformation mechanisms. The inverse pole-figure shows a maximum at c with a shoulder towards or a second maximum at e. This is in agreement with preferred orientation observed in experimentally deformed Yule marble and can be explained as the product of dominant twin gliding on e and translation gliding on r (Turner et al., 1956). At high temperatures (900–1000° C) strong grain growth (from 4 to 50 microns) indicates that the fabric recrystallized. Grains are equidimensional and clear with a marble-like texture. The inverse pole-figure shows a single maximum at r, and c-axes are oriented in a small circle around the axis of compression, σ1. Such a pattern of preferred orientation would be expected on thermodynamic grounds assuming that recrystallized grains will be oriented in such a way that the strain energy is a maximum (e.g. MacDonald, 1960). Decrease in confining pressure caused a decrease of the maximum at c and the formation of a secondary maximum at highangle positive rhombs in the inverse pole-figure. This can be interpreted as r translation dominating over e twinning. In all deformation experiments an equilibrium in preferred orientation was reached after 20 percent shortening. The strength of preferred orientation decreased with increasing temperature. Aragonite was produced within its hydrostatic stability field at temperatures above 500° C. Close to the phase boundary, coarse-grained textures showed preferred orientation with poles to (010) parallel to σ1. At higher pressures the fabric is fine-grained and [001] is aligned parallel to σ1. Evidence is given that the phase change from calcite to aragonite in these deformation experiments is a diffusive and not a martensitic transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.