Abstract

Ferroelectric polarization can be used to assemble various organic and inorganic species and to create nanostructures with controlled properties. In this work, we used poly(vinylidene fluoride-co-trifluoroethylene) P(VDF-TrFE), ultrathin films deposited by the Langmuir–Blodgett technique as templates for the assembly of various phospholipids, which are the essential components of cell membranes. It was observed that 1,2-di-O-hexadecyl-sn-glycero-3-phosphocholine phospholipids (DHPC) form self-assembled structures (molecular domains) on bare P(VDF-TrFE) surfaces. These were revealed by the formation of homogeneous and stable rounded blobs with diameters in the range 0.5–3 µm. Further, ferroelectric polymer films were polarized by the application of various voltages via a conducting tip using a piezoresponse force microscopy (PFM) setup and PFM images were obtained showing controlled polarization distribution. After this, the phospholipid molecules were deposited from the solution. Conventional atomic force microscopy experiments were then performed to assess the selectivity of the deposition process. It was observed that the deposition process is very sensitive to the concentration of the solution. The selective deposition was observed mainly at the polarization boundaries where the selectivity reached a maximum value of about 20–40%. In this way, the controlled assembly of organic molecules on the polymer surfaces could be achieved. In addition, the PFM tips could be functionalized by the phospholipids and switchable lines of the DHPC molecules on the P(VDF-TrFE) surface were then visualized by PFM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.