Abstract

A framework for computing preferred repairs in numerical databases violating a given set of strong and weak aggregate constraints is introduced, which is based on a transformation into an Integer Linear Programming (ILP) instance. Aggregate constraints are linear inequalities on aggregates retrieved from the input data. While strong constraints express mandatory conditions, weak constraints define conditions which are expected to be satisfied, even if this is not mandatory. Thus, preferred repairs are repairs which make the data satisfy all the given strong constraints and as many weak constraints as possible. An experimental validation of the proposed approach is provided, proving its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.