Abstract
Immediate loading of dental implants offers treatment cost advantages to patients and avoids the functional and psychological problems caused by the wearing of provisional dentures. There is evidence that the amount of transverse collagen fiber orientation in bone is influenced by mechanical stresses and strains. Two osseointegrated dental implants in humans were used in the present study. Two implants inserted in the maxilla were analyzed: 1 short-term implant (implant A) immediately loaded and retrieved after 4 months of loading and 1 long-term implant (implant B) immediately loaded and retrieved after 12 years. We hypothesized that the bone functional strain caused by immediate loading correlated well with the collagen fiber organization occurring after both short- and long-term functional healing. Circularly polarized light (CPL) was used to assess the area fraction extension related to the transverse collagen fiber orientation in the bone matrix. After evaluating a total of 68 digitized images taken at x50 magnification, birefringence measurements were performed all around the implant surfaces by using 2 central sections from each implant. The results showed that the bone-to-implant contact (BIC) percentage for implant A was 67.9% +/- 9.5% (mean +/- SD), whereas the BIC percentage for implant B was 74.6% +/- 11.2% (mean +/- SD). The area fraction extension was 2.7% +/- 1.4 % (mean +/- SD) for implant A, whereas the area fraction extension was 4.7% +/- 1.2% (mean +/- SD) for implant B. The CPL measurements of the birefringence for transverse collagen fibers of implant A vs implant B indicated that the bone fraction area difference was not high. In the bone near both dental implants, no differences were found in the amount of transverse collagen fibers. Immediate loading seemed to determine and maintain the collagen fiber's orientation over a long period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.