Abstract

We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.