Abstract

Recent global geopolitical tensions have exacerbated the scarcity of rare-earth elements (REEs), which are critical across many industries. REE-rich coal fly ash (CFA), a coal combustion residual, has been proposed as a potential source. Conventional REE-CFA recovery methods are energy- and material-intensive and leach elements indiscriminately. This study has developed a new valorization process based on the ionic liquid (IL) betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) for preferential extraction of REEs from different CFAs. Efficient extraction relies on [Hbet][Tf2N]'s thermomorphic behavior with water: upon heating, water and the IL form a single liquid phase, and REEs are leached from CFA via a proton-exchange mechanism. Upon cooling, the water and IL separate, and leached elements partition between the two phases. REEs were preferentially extracted over bulk elements from CFAs into the IL phase and then recovered in a subsequent mild-acid stripping step, regenerating the IL. Alkaline pretreatment significantly improved REE leaching efficiency from recalcitrant Class-F CFAs, and additional betaine improved REE and bulk element separation. Weathered CFA showed slightly higher REE leaching efficiency than unweathered CFA, and Class-C CFA demonstrated higher leaching efficiency but less selective partitioning than Class-F CFAs. Significantly, this method consistently exhibits a particularly high extraction efficiency for scandium across different CFAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.