Abstract

We investigated the interaction of rat PEPT2, a high-affinity peptide transporter, with neutral, anionic, and cationic dipeptides using electrophysiological approaches as well as tracer uptake methods. d-Phe-L-Gln (neutral), d-Phe-L-Glu (anionic), and d-Phe-L-Lys (cationic) were used as representative, non-hydrolyzable, dipeptides. All three dipeptides induced H +-dependent inward currents in Xenopus laevis oocytes heterologously expressing rat PEPT2. The H +:peptide stoichiometry was 1:1 in each case. A simultaneous measurement of radiolabeled dipeptide influx and charge transfer in the same oocyte indicated a transfer of one net positive charge into the oocyte per transfer of one peptide molecule irrespective of the charged nature of the peptide. We conclude that the zwitterionic peptides are preferentially recognized by PEPT2 as transportable substrates and that the proton/peptide stoichiometry is 1 for the transport process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.