Abstract
BackgroundThe anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Co-administration of allopurinol, a suicide inhibitor of XOD, which blocks the hydroxylation of 6MP inadvertently enhances the 6MP blood level, counters this reduction. However, allopurinol also blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected.ResultsHere, we have characterized two such unique inhibitors namely, 2-amino-6-hydroxy-8-mercaptopurine (AHMP) and 2-amino-6-purinethiol (APT) on the basis of IC50 values, residual activity in bi-substrate simulative reaction and the kinetic parameters like Km, Ki, kcat. The IC50 values of AHMP for xanthine and 6MP as substrate are 17.71 ± 0.29 μM and 0.54 ± 0.01 μM, respectively and the IC50 values of APT for xanthine and 6MP as substrates are 16.38 ± 0.21 μM and 2.57 ± 0.08 μM, respectively. The Ki values of XOD using AHMP as inhibitor with xanthine and 6MP as substrate are 5.78 ± 0.48 μM and 0.96 ± 0.01 μM, respectively. The Ki values of XOD using APT as inhibitor with xanthine and 6MP as substrate are 6.61 ± 0.28 μM and 1.30 ± 0.09 μM. The corresponding Km values of XOD using xanthine and 6MP as substrate are 2.65 ± 0.02 μM and 6.01 ± 0.03 μM, respectively. The results suggest that the efficiency of substrate binding to XOD and its subsequent catalytic hydroxylation is much superior for xanthine in comparison to 6MP. In addition, the efficiency of the inhibitor binding to XOD is much more superior when 6MP is the substrate instead of xanthine. We further undertook the toxicological evaluation of these inhibitors in a single dose acute toxicity study in mice and our preliminary experimental results suggested that the inhibitors were equally non-toxic in the tested doses.ConclusionWe conclude that administration of either APT or AHMP along with the major anti-leukemic drug 6MP might serve as a good combination cancer chemotherapy regimen.
Highlights
The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine
IC50 determination A few purine and pyrazolo pyrimidine-based compounds were screened for inhibitory property against XOD-catalyzed hydroxylation using xanthine and 6MP as substrates. 10 μM of either of the substrates and 2.8 U/ml of XOD were taken for the IC50 determination
Since allopurinol is a suicide inhibitor of XOD and the inhibition develops time-dependently [31], so the IC50 value of allopurinol was calculated for the late phase as well by carrying out the reaction for 60 min and the IC50 values of allopurinol for XOD corresponding to the substrates hypoxanthine and xanthine were 0.55 ± 0.45 and 1.65 ± 0.25 μM, respectively
Summary
The anticancer drug, 6-mercaptopurine (6MP) is subjected to metabolic clearance through xanthine oxidase (XOD) mediated hydroxylation, producing 6-thiouric acid (6TUA), which is excreted in urine. This reduces the effective amount of drug available for therapeutic efficacy. Allopurinol blocks the hydroxylation of hypoxanthine, xanthine (released from dead cancer cells) leading to their accumulation in the body causing biochemical complications such as xanthine nephropathy. This necessitates the use of a preferential XOD inhibitor that selectively inhibits 6MP transformation, but leaves xanthine metabolism unaffected. We have discussed the action of two such preferential XOD inhibitors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.