Abstract

Integration is a crucial step in the life cycle of human immunodeficiency virus type 1 (HIV-1); therefore, inhibitors of HIV-1 integrase are candidates for antiretroviral therapy. Two 7-hydroxytropolone derivatives (alpha-hydroxytropolones) were found to inhibit HIV-1 integrase. A structure-activity relationship investigation with several tropolone derivatives from The National Cancer Institute compound repository demonstrated that the 7-hydroxy group is essential for integrase inhibition. alpha-Hydroxytropolones preferentially inhibit strand transfer and are inhibitory both in the presence of magnesium or manganese. Lack of inhibition of disintegration in the presence of magnesium coupled with results from different cross-linking assays suggests alpha-hydroxytropolones as interfacial inhibitors. We propose that alpha-hydroxytropolones chelate the divalent metal (Mg2+ or Mn2+) in the enzyme active site. The most active compound against HIV-1 integrase in biochemical assays [2,4,6-cycloheptatrien-1-one, 2,7-dihydroxy-4-isopropyl (NSC 18806) IC50 = 4.8 +/- 2.5 microM] exhibits weak cytoprotective activity against HIV-1(IIIB) in a cell-based assay. alpha-Hydroxytropolones represent a new family of inhibitors for the development of novel drugs against HIV infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.