Abstract

5'-deoxy-5-fluorouridine (5'-DFUR) and capecitabine are oral anti-cancer agents, which are enzymatically converted to 5-fluorouracil (5-FU) by thymidine phosphorylase in humans and uridine phosphorylase in mice. Since the activity of these phosphorylases is higher in cancerous tissue than in normal tissue, systemic administration of 5'-DFUR and capecitabine achieves high intratumoral 5-FU levels and low adverse effects on non-tumoral tissue. Accordingly, 5'-DFUR and capecitabine are widely used for the treatment of cancer patients. In the present study, we examined the effects of 5'-DFUR and capecitabine on bone metastases, one of the most common complications of breast cancer, using an animal model in which inoculation of 4T1/luc mouse breast cancer cells into the mammary fat pads of female BALB/c mice developed spontaneous metastases in distant organs including bone, lung and liver. Mice received 4T1/luc cell inoculation in the mammary fat pad at day 0 and oral 5'-DFUR (31, 62, 123 or 246 mg/kg) or capecitabine (90, 180 or 359 mg/kg) daily from day 7 to day 21. Both 5'-DFUR and capecitabine significantly inhibited orthotopic tumor formation and distant metastases to bone, lung and liver in a dose-dependent manner. Of note, the lowest dose of 5'-DFUR (31 mg/kg) and capecitabine (90 mg/kg), which failed to inhibit orthotopic tumor development and the lung and liver metastases, significantly reduced the bone metastases. In conclusion, our results suggest that oral 5'-DFUR and capecitabine are effective for the treatment of primary and secondary breast tumors. Most notably, they also suggest that these agents are preferentially beneficial for bone metastases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call