Abstract
The products of the nuclear oncogenes fos and jun are known to form heterodimers that bind to DNA and modulate transcription. Both proteins contain a leucine zipper that is important for heterodimer formation. Peptides corresponding to these leucine zippers were synthesized. When mixed, these peptides preferentially form heterodimers over homodimers by at least 1000-fold. Both homodimers and the heterodimer are parallel alpha helices. The leucine zipper regions from Fos and Jun therefore correspond to autonomous helical dimerization sites that are likely to be short coiled coils, and these regions are sufficient to determine the specificity of interaction between Fos and Jun. The Fos leucine zipper forms a relatively unstable homodimer. Instability of homodimers provides a thermodynamic driving force for preferential heterodimer formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.