Abstract

Observations of bright deposits in Ceres’ Occator crater have revealed large quantities of natrite (Na2CO3) and smaller amounts of NH4Cl or NH4HCO3. These materials have been suggested to originate from the crystallization of brines that reached the surface from below. Here we report a systematic study of the chemistry of frozen brines containing sodium, ammonium, chloride, and carbonate ions via micro-Raman spectroscopy. Natrite and hydrohalite (NaCl·2H2O) are found to form preferentially, even in ammonium-dominated solutions. Additionally, NH4Cl could only form when NH4+ or Cl- (or both) are present in excess in the brine solutions. The detection of NH4Cl on Ceres’ surface may thus imply an early subsurface reservoir rich in ammonium and/or chloride, placing an important constraint on modeling of the liquid composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.