Abstract

AbstractThe role of organically modified silicate (OMS), Lucentite STN on the formation of β‐crystalline phase of poly(vinylidene fluoride) (PVDF) is investigated in the present study. The OMS was solution blended with PVDF and cast on glass slide to form PVDF‐OMS nanocomposites. Solution cast samples were subjected to various thermal treatments including annealing (AC‐AN), melt‐quenching followed by annealing (MQ‐AN), and melt‐slow cooling (MSC). Fourier‐transform infrared spectroscopy (FT‐IR), wide angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC) were used to investigate the crystalline structure of thermally treated samples. As a special effort, the combination of in situ thermal FT‐IR, WAXD, and DSC studies was utilized to clearly assess the thermal properties. FT‐IR and WAXD results of MQ‐AN samples revealed the presence of β‐phase of PVDF. Ion‐dipole interaction between the exfoliated clay nanolayers and PVDF was considered as a main factor for the formation of β‐phase. Melt‐crystallization temperature and subsequent melting point were enhanced by the addition of OMS. Solid β‐ to γ‐crystal phase transition was observed from in situ FT‐IR and WAXD curves when the representative MQ‐AN sample was subjected to thermal scanning. Upon heating, β‐phase was found to disappear through transformation to the thermodynamically stable γ‐phase rather than melting directly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2173–2187, 2008

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.